Vertex Cover

either $u \in S$, or $v \in S$, or both. subset of vertices $S \subseteq V$ such that $|S| \le k$, and for each edge (u, v) VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a

$$k = 4$$

S = { 3, 6, 7, 10 }

Finding Small Vertex Covers

Q. What if k is small?

Brute force. O(k nk+1).

- Try all $C(n, k) = O(n^k)$ subsets of size k.
- Takes O(k n) time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on k, e.g., to $O(2^k \text{ k n})$.

Ex. n = 1,000, k = 10. Brute. $k n^{k+1} = 10^{34} \implies infeasible$. Better. $2^k k n = 10^7 \implies feasible$.

Remark. If k is a constant, algorithm is poly-time; if k is a small constant, then it's also practical.

Finding Small Vertex Covers

at least one of $G - \{u\}$ and $G - \{v\}$ has a vertex cover of size $\leq k-1$ Claim. Let u-v be an edge of 6. 6 has a vertex cover of size ≤ k iff delete v and all incident edges

P†. ↓

- Suppose G has a vertex cover S of size ≤ k
- S contains either u or v (or both). Assume it contains u.
- $S \{u\}$ is a vertex cover of $G \{u\}$.

Pf. ↑

- Suppose S is a vertex cover of $G \{u\}$ of size $\leq k-1$.
- Then $S \cup \{u\}$ is a vertex cover of G. ■

Pf. Each vertex covers at most n-1 edges. Claim. If G has a vertex cover of size k, it has \leq k(n-1) edges.

Finding Small Vertex Covers: Algorithm

size \leq k in $O(2^k \text{ kn})$ time. Claim. The following algorithm determines if G has a vertex cover of

```
boolean Vertex-Cover(G, k) {
    if (G contains no edges) return
    if (G contains > kn edges) return
                                                        let (u, v) be any edge of G
Vertex-Cover(G - {u}, k-1)
Vertex-Cover(G - {v}, k-1)
```

þf

- Correctness follows previous two claims.
- O(kn) time. There are $\leq 2^{k+1}$ nodes in the recursion tree; each invocation takes

Finding Small Vertex Covers: Recursion Tree

Duality: Vertices -> Faces

Duality: Vertices -> Faces

Vertex-coloring -> Face coloring

Reduce to degree 3:

Hamiltonian cycle -> 4 coloning

Color inside with 2 colors,

ontside with 2 colors;

each side has no cycles

Puclify: Vertices -> Faces

Vartex-coloring -> Face coloring

Duality: Vertices -> Faces

Vertex-coloring -> Face coloring

NP-completeness of Planar Hamilton Gycle

*;**

.

•

